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Abstract—Survival analysis (SA) is an essential task that aims
to predict survival status and duration, determine individual
and precise treatment strategies, and assess disease intensity
and direction. However, the current research on multimodal SA
has identified three unique challenges: inefficient cross-modal
information integration, insufficient inter-modal key features, and
noisy data. In this paper, we propose a novel SA framework,
named Attention-based Multimodal Bilinear Feature Fusion
(AMBF)-SA, to address the aforementioned challenges. Specifi-
cally, AMBF-SA first performs feature extraction with the off-the-
shelf models on each modality separately, then fuses the features
between multiple sources and modalities using our proposed
AMBF method, and finally outputs the survival prediction by
a multi-layer perception (MLP). Experimental results on the
Non-small Cell Lung Cancer (NSCLC) Radiogenomics dataset
demonstrate remark performance of AMBF-SA compared with
the rest of the experimented models, including the models trained
with single and combined modalities under the Mean Absolute
Error (MAE) and the Concordance Index (C-index) evaluation
metrics, indicating the usefulness of our proposed framework.

Keywords—Attention mechanism, feature fusion, lung cancer,
multimodal machine learning, survival analysis.

I. INTRODUCTION

Survival analysis (SA) is an essential task that aims to

predict survival status and duration, determine individual and

precise treatment strategies, and assess disease intensity and

direction, allowing physicians to select the most opportune

moment for therapeutic intervention, thus avoiding over-

treatment and optimizing the optimal use of medical resources

[1], [2]. Simultaneously, it can also be utilized to assist patients

in planning the remainder of their lives and achieving a more

comprehensive life [3]. Such studies focus on predicting sur-

vival rates for complex ailments by incorporating multi-source

and diverse features extracted from both clinical and medical

image data to enhance the accuracy and personalization of

the predictions. Combining multi-source information for SA

not only assists doctors in better assessing the condition and

treatment plan [2] but also enhances patients’ understanding

of their condition and improves the quality of survival.

Original research on SA mainly focused on the predic-

tions over a single modality of data. As shown in Fig. 1,

the modalities leveraged for previous SA research include

clinical information [4], gene expressions [5], and medical

∗ Equal contribution.† Partly done while H.Na was at Xi’an Jiaotong-Liverpool University.
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Fig. 1. Modalities and sources commonly focused on in current SA research,
including clinical information, gene expressions, and medical images, such as
CT and PET scans.

images [6], such as computed tomography (CT) and positron

emission tomography (PET) scans, and failed to fully ex-

ploit the heterogeneous information represented by different

modalities of data. Additionally, some work also combined

the features extracted from the combination of aforementioned

sources to obtain better performances [7], [8]. Recently, some

studies attempted to employ straightforward feature splicing

techniques [9]–[11]; however, such approaches involved linear

and uncomplicated combinations, failed to fully acknowledge

the deep integration of semantic information from multi-source

data. Considering that directly splicing heterogeneous features

from diverse distributions may also encounter the issue of

feature mismatch; therefore, constructing SA models capable

of integrating heterogeneous features from multiple sources is

a crucial scientific issue. Further experiments and research are

required to enhance the expressiveness and robustness of SA

models through cross-modal feature transformation and fusion.

In terms of multimodal SA, the current research in this field

has identified the following unique challenges: (1) Inefficient
Cross-modal Information Integration. In current research

on multimodal SA, different modalities and sources, such

as CT and PET scans, provide valuable information from

multiple aspects. For instance, CT scans are able to scan

detailed anatomical structures, while PET scans can showcase

lesion activities. Another layer of complexity emerges with

datasets providing clinical details, such as patient histories.

Therefore, the integration of these diverse sources to maximize

predictive value is critical [12]. (2) Insufficient Intra-modal
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Key Features. Within modalities such as CT or PET, it’s

crucial to extract key features. Beyond addressing contrast and

resolution differences, capturing core attributes within each

modality is essential. Neglecting these can yield incomplete

insights [10]. (3) Noisy Data. Noisy data inevitable exists

in current datasets, which may hinder the models’ training

performances. With growing data volumes, it is paramount

to maintain computational efficiencies and model scalabilities

without succumbing to the noisy samples [13].

In this paper, we propose a novel SA framework, named

Attention-based Multimodal Bilinear Feature Fusion (AMBF)-

SA, to address the aforementioned challenges. Specifically, as

shown in Fig. 2, AMBF-SA first performs feature extraction

with the off-the-shelf models on each modality separately,

including the medical images, clinical information, and tumor

segmentations. Consequently, feature fusion between multiple

sources and modalities is performed by utilizing our proposed

AMBF method, which enables handling heterogeneous mul-

timodal data to enhance the SA process. Finally, the sur-

vival prediction is output by a multi-layer perception (MLP).

Notably, AMBF not only considers the uniqueness of each

pattern but also fully exploits the potential correlations across

them, leading to more accurate survival predictions. Experi-

mental results on the Non-small Cell Lung Cancer (NSCLC)

Radiogenomics dataset [14] demonstrate remark performance

of AMBF-SA compared with the rest of the experimented

models, including the models trained with single and combined

modalities under the Mean Absolute Error (MAE) and the

Concordance Index (C-index) evaluation metrics, indicating

the usefulness of our proposed framework.

In summary, our main contributions are as follows:

• We introduce a novel SA framework, named AMBF-

SA, to adeptly manage heterogeneous features present

in multimodal medical data, subsequently improving the

performance of SA.

• We design a two-stage feature fusion strategy, named

AMBF, that fully considers the uniqueness of each modal-

ity and the associations between them. It first processes

the features of each modality with multiple heads of

attention and then cross-fertilizes them to generate the

final output.

• Experimental results demonstrate that AMBF-SA per-

forms optimally among the experimented models, better

than those trained with single and subset modalities.

II. RELATED WORK

In the field of medical image analysis, it is common to per-

form feature extractions and survival analysis (SA) over single

modalities, such as clinical information [4], gene expressions

[5], and medical images [6], such as computed tomography

(CT) and positron emission tomography (PET) scans. Some

work also combined the features extracted from the combina-

tion of aforementioned sources to obtain better performances

[7], [8]. While the integration of machine learning and deep

learning models with medical images offers promising poten-

tial [15], [16], they have achieved performance that competes

with and even exceeds doctors in some cases [17]; however,

it is rarely employed for mortality prediction. As a result,

this represents a unique and challenging domain, and the

overall performance of available survival analysis techniques

is generally inadequate. Wu et al. [11] proposed the first multi-

modal deep learning method for Non-small Cell Lung Cancer

(NSCLC) survival analysis, known as DeepMMSA, to address

the aforementioned problem. Unlike conventional methods

that relied on clinical data for lung cancer survival analysis

and provided statistical probabilities, DeepMMSA extracted

features from multiple modalities, including CT images and

clinical data, and fused them for survival prediction. Extensive

experimental results demonstrated the underlying relationship

between prognostic information and radiomic images, together

with the superiority of DeepMMSA over traditional unimodal

approaches, leading to increased accuracy for survival pre-

diction. To improve the extraction of latent features from

medical images, Wang et al. [18] retrieved radiomic features

from regions of interest (ROI) and combined these features

for survival prediction outcomes. Additionally, they employed

multidimensional intra- and peritumoral features for patients

with clinical stage and pathologic stage IA pure-solid NSCLC

so as to provide personalized survival risk stratification. This

method demonstrated the efficacy of stratifying survival risks

for patients with clinical and pathologic stage IA pure-solid

NSCLC with the utilization of multiregional radiomics signa-

ture, improving the discriminative ability beyond conventional

clinical predictors.

Previous research has demonstrated the effectiveness of ma-

chine learning and radiomics analysis methods in the overall

survival (OS) of NSCLC predictions. Sun et al. [19] extracted

tumor features from pre-processed CT images, quantifying tu-

mor phenotypic characteristics based on shape, size, intensity

statistics, and texture. With the utilization of 5 feature selection

methods and 8 machine learning models, they concluded that

the gradient boosting linear models based on Cox’s partial like-

lihood (GB-Cox) with the concordance index (CI) feature se-

lection method achieved the overall optimal performance. For

enhanced application of radiomic features in survival analysis,

Müller-Franzes et al. [20] conducted reliability analysis on CT

and MRI radiomic features, improving the predictive capability

of the underlying model for clinical imaging modalities and

tumor entity patient survival prior to reliability analysis and

selecting the most reliable radiomic features. Blanc-Durand et
al. [21] adopted LASSO Cox regression to obtain progression-

free survival (PFS) and OS-pPET-RadScores when predicting

survival of hepatocellular carcinoma (HCC). Kaplan-Meier

method was used to estimate the survival curve to explore

the potential association of the PET radiomics signature with

the PFS and overall survival OS.

Under the multimodal setting, Chen et al. [22] assessed

the association of radiological imaging and gene expression

with patient outcomes in NSCLC and constructed a nomogram

by combining selected radiomic, genomic, and clinical risk

factors with the extraction of handcrafted radiomic features

and deep learning genomic features. To address the costly and
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time-consuming shortcomings in tumor localization, Dao et
al. [23] proposed a tumor segmentation model, named Multi-

scale Aggregation-based Parallel Transformer Network (MAP-

TransNet), by employing parallel transformer mechanism to

capture the global context of multi-scale encoder feature maps

and then concatenated them to obtain global context at multi-

scale maps. Furthermore, they concluded the utilization of

multimodal features offered abundant information pertaining

to survival analysis task in NSCLC.

III. METHODOLOGY

A. Problem Definition

Given a multimodal medical dataset with CT images, PET

images, clinical data, and a region of interest (ROI), our

objective is to predict the corresponding survival time. For

a CT image ICT, lung features are extracted using the combi-

nation of lungmask and ResNet-18, represented by FCT =
Elung(ICT). Simultaneously, for a PET image IPET, features are

delineated using ResNet-18, denoted as FPET = Eres(IPET).
Clinical data, referred to as Dclinic, undergoes pre-processing

techniques, such as one-hot encoding, and scaling to produce

the feature Fclinic. Radiomic features from the ROI, R, in the

CT image ICT, are extracted using PyRadiomics, resulting in

Frad = Erad(R, ICT). In the feature fusion phase, we utilize our

proposed AMBF method, formulated as F = AMBF(Fclinic +
Frad,AMBF(FCT, FPET)). This fused feature F is then input

into a designed multi-layer perceptron (MLP) for predicting

the survival time, expressed as y = MLP(F ). The overarching

aim is to leverage features from various medical modalities

through an efficient fusion strategy to predict survival times

accurately.

B. Feature Extraction

1) CT/PET Image Feature Extraction: We employ a U-Net

model [24] pre-trained on a on a subset of the LTRC dataset

to extract features from CT images, with the utilization of a

renowned lungmask toolkit [25], providing a high capabil-

ity to efficiently reduce false positives, enhancing prediction

accuracy, and also facilitates direct execution of the R231 and

LTRCLobes models via fusion results. Having resized the CT

images to a uniform 224 × 224 pixels, they are fed into the

U-Net model. The model subsequently outputs a lung region

mask with a resolution of 512× 512 pixels. To maintain data

integrity, we institute a filtering criterion: images are excluded

if the non-zero pixel count in the mask falls below 5% of the

total possible pixel count for a 512× 512 dimension.

Following the lung field pre-processing, CT and PET im-

ages, though processed separately, are both channeled into

ResNet-18 [26] for individual feature extraction. ResNet-

18, a sophisticated structure of convolutional layers, pooling

segments, and a diverse range of residual units, operates based

on the foundational equation, as shown in Eq. (1) as follows:

y = F (x,W ) + x, (1)

where x and y represent the input and output, F is the neural

operations within the residual block, and W is their associated

weights. At the end of the model, we add a linear layer to

adjust the feature dimensions for each patient, and both PET

and CT features are saved with a feature dimension of 1, 500
to facilitate the use of image features in the next step. With

ResNet-18, we achieve a comprehensive feature representation

for both CT and PET images, each set capturing distinct

features inherent to their respective modalities.

2) Radiomic Feature Extraction: In this research, we per-

form an in-depth quantitative analysis of medical images so as

to utilize radiomics features. Using the PyRadiomics software

package [27], 18 categories of radiomics features, amounting

to a total of 1, 682 individual features, are extracted from

CT images and their corresponding ROI segmentation. These

features encompass the original images, as well as their various

transformations, including exponential, gradient, square, and

square root images. Additionally, features derived from images

transformed by specific filters such as wavelets, Gaussian

Laplace, and various local binary patterns are also considered.

Such transformations provides a multi-dimensional viewpoint

for the extraction of features. For instance, edges and structures

are accentuated in gradient images [28], while specific inten-

sity ranges are highlighted in exponential and square function

images, facilitating enhanced visualization and feature extrac-

tion from diverse image regions [29].

Subtle textures and patterns, which are often challenging

to discern in the original images, are effectively captured

through specific filter transformations, such as the Local

Binary Pattern (LBP) method [30]. Wavelet filters, on the

other hand, allowed for the decomposition of images into

distinct frequency components, emphasizing finer details and

rougher structures within the image [31]. Specifically, first-

order statistics are employed to describe the voxel intensity

distribution within regions of the image defined by masks,

thereby furnishing fundamental image information. Shape-

based descriptors provided insights into the geometric shapes

and sizes of structures within 2D and 3D images. Furthermore,

texture matrix features, encompassing the Gray-Level Co-

occurrence Matrix (GLCM), Gray-Level Dependence Matrix

(GLDM), Gray-Level Run Length Matrix (GLRLM), Gray-

Level Size Zone Matrix (GLSZM), and Neighboring Gray

Tone Difference Matrix (NGTDM), present comprehensive

quantitative depictions of intricate patterns or textures, grant-

ing deeper understandings of the inherent image characteris-

tics.

C. Feature Fusion

We introduce a novel feature fusion methodology, named

Attention-based Multimodal Bilinear Feature Fusion (AMBF),

inspired by both the Transformer architecture [32] and multi-

modal compact bilinear pooling [33], that leverages the multi-

head attention mechanism, designed to address the intricate

challenge of modeling sophisticated cross-modal interactions,

aiming to capture nuanced relationships within and across

modalities. As shown in Fig. 3, AMBF consists of two primary

stages: intra-modal feature attention, which focuses on indi-
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Fig. 2. The overall framework of our proposed AMBF-SA framework, in which the features are firstly extracted with the off-the-shelf models on each
modality separately, and then the feature fusion between multiple sources and modalities is performed by utilizing our proposed AMBF method. Finally, the
survival prediction is output by a MLP model.

vidual modality characteristics, and inter-modal feature fusion,

where cross-modal interactions are harmoniously combined.

1) Intra-modal Feature Attention: Given an input feature

set X from a specific modality, we deploy a multi-head

attention mechanism. Formally, for each input feature xi ∈ X ,

the attention mechanism computes a weighted sum of all

features in X , weighted by the attention scores between xi and

every other feature in X . The attention scores are computed

as Eq. (2) as follows:

A(xi, xj) =
exp(xi · xj)∑

k∈X exp(xi · xk)
, (2)

where xi ·xj is the dot product between the query representa-

tion of xi and the key representation of xj . The output of this

stage is a set of attention-enhanced features, which capture the

most crucial features within each modality.

2) Inter-modal Feature Fusion: After capturing the es-

sential features within each modality, we focus on fusing

features across modalities. We use a compact bilinear pooling

method known as the count sketch (CS) transformation. For

two modalities A and B with feature vector vA and vB
respectively, the sketch count transformation is given by Eq.

(3) as follows:

CS(v) =
d∑

i=1

si · vi · δ(hi), (3)

where hi and si are randomly generated parameters, δ is

the Kronecker delta function, and d is the feature dimension.

Subsequently, an element-wise multiplication is performed be-

tween the transformed feature vectors of the two modalities to

yield the final fused feature representation, thereby enhancing

the cross-modal interaction representation, as shown in Eq. (4)

as follows:

vfused = CS(vA)� CS(vB), (4)

in which the symbol � represents element-wise multiplication

between two vectors. The combined effect of the attention

mechanism and the fusion technique allows our approach to

selectively focus on essential features within each modality

while also effectively capturing interactions between them.

D. Survival Prediction

Our approach to survival prediction leans on a neural

architecture, marking a departure from classic Kaplan-Meier or

Cox regression frameworks. We employ a feedforward neural

network tailored to predict the survival times. The network

consists of a single hidden layer of 64 neurons, integrated with

a Sigmoid activation function for non-linearity. To enhance

generalization and prevent overfitting, a dropout mechanism

with a rate of 0.3 is integrated. Central to our training process

is the Mean Absolute Error (MAE) loss, which quantifies the

discrepancy between the predicted and actual survival times.
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Fig. 3. Procedures of our proposed AMBF multimodal feature fusion method.

Formally, for N samples, the MAE loss is given by Eq. (5)

as follows:

MAE =
1

N

∑N
i=1 |yi − ŷi| , (5)

where yi represents the ground truth and ŷi is the predicted

survival time. Through this loss function, the model is refined

to offer nuanced predictions, bridging the gap between tradi-

tional and contemporary predictive paradigms.

IV. EXPERIMENTS

A. Dataset

The Non-small Cell Lung Cancer (NSCLC) Radiogenomics

dataset [14] from the Cancer Imaging Archive (TCIA)1 is

leveraged as the benchmark dataset in our research, which is a

dataset established to elucidate potential correlations between

the molecular attributes of tumors and the features of medical

imaging, and subsequently to facilitate the development and

evaluation of prognostic medical imaging biomarkers. For

each subject, the available data encompasses CT images, ROI

segmentation of tumors evident in the CT scans, and pertinent

clinical information. The clinical parameters encompass age,

gender, smoking status, TNM staging, overall staging (derived

from TNM), and survival rates.

1https://www.cancerimagingarchive.net/

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF OUR EXPERIMENTAL DATA

Feature Categories Description

Age
< 69 years 64 (45.39%)

≥ 69 years 77 (54.61%)

Sex
Male 105 (74.47%)

Female 36 (25.53%)

Histology

Adenocarcinoma 111 (78.72%)

Squamous 27 (19.15%)

Other 3 (2.13%)

Pathologica T Stage

T1 & Tis 72 (51.06%)

T2 48 (34.04%)

T3 16 (11.35%)

T4 5 (3.55%)

Pathologica N Stage

N0 114 (80.85%)

N1 10 (7.09%)

N2 17 (12.06%)

Pathologica M Stage

M0 137 (97.16%)

M1a 1 (0.71%)

M1b 3 (2.13%)

Smoking Status

Non-smoking 22 (15.60%)

Smoking 28 (19.86%)

Former Smoking 91 (64.54%)

Survival Status
Alive 91 (64.54%)

Dead 50 (35.46%)

Of the initial 211 subjects, data from 141 patients, en-

compassing clinical information, CT and PET images, and

associated tumor segmentation labels, are incorporated into our

study. The remaining 70 subjects were precluded due to either

a lack of segmentation labels or failure to satisfy modality

data prerequisites. For the selected data, the population of each

clinical attribute are detailed in Table I.

B. Data Pre-processing

A comprehensive pre-processing strategy is implemented

in this research in response to the phenomenon observed

in the data, such as missing values and nominal at-

tributes, including data selection, missing values fulling,

and one-hot encoding. Additionally, the recurrence dates

are simplified by categorizing them based on their re-

spective years, a measure taken to bolster the reliability

of our predictions given our dataset’s size. To refine our

imputation approach, the interval between CT Date and

Date of Last Known Alive is calculated, which then

informs the imputation of Time to Death (days). This

feature underwent min-max normalization to align its scale

with other continuous variables, constraining its values be-

tween 0 and 1, as shown in Eq. (6) as follows:

Xscaled =
X −Xmin

Xmax −Xmin

. (6)

From an imaging perspective, the raw DICOM image data

undergoes conversion to the NIfTI format, a preparatory step

for downstream radiomics analysis and to ensure versatility

in tool compatibility. Image standardization is achieved by
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mapping pixel values to a mean of 0 and a standard deviation

of 1, with set parameters of 0.5 for both mean and standard

deviation.

C. Experiment Setup

To achieve a fair evaluation, we partition the NSCLC

Radiogenomics dataset into training and test sets at a ratio of

8 : 2. Additionaly, to ensure efficient and stable training, we

utilize an NVIDIA GeForce RTX 3090 24GB graphics card

for all computational tasks. Regarding our training strategy for

the model, we opted for SGD as the optimizer, and we set an

initial learning rate of 1e−3 and employ the cosine annealing

approach for dynamic learning rate adjustment. Furthermore,

the number of epochs for training is set as 400.

D. Evaluation Metrics

We adopt the Mean Absolute Error (MAE) and the Con-

cordance Index (C-index) to evaluate the survival prediction

performance our experimented models. The MAE quantifies

the average absolute disparity between the predicted and

actual survival times, acting as an intuitive measure of the

model’s predictive accuracy, where a reduced MAE indicates

superior prediction accuracy [1]. Simultaneously, the C-index

gauges the alignment between the model’s predicted survival

time orderings and the actual observed order for patients

categorized as high or low risk, which can be calculated as

Eq. (7) as follows:

C − index =
concordant pairs

comparable pairs
. (7)

In calculating the C-index, we rigorously adhered to the

guidelines delineated by Harrell et al. [34], especially designed

for datasets encompassing right-censored data. Within this

framework, only pairs of samples with discernible event times,

inclusive of right-censored data, are taken into account, and

a pair is considered comparable if the observed event is not

earlier than the event time of the associated sample.

E. Experimental Results

Experimental results of the models’ performances over the

test set of the NSCLC Radiogenomics dataset are presented

in Table II, in which a reduced MAE and an elevated C-

index indicate a model’s superior performance. From the

experimental results, we can make the following observations:

1) It’s salient to observe that radiomic features attain a

C-index of 0.6497, which notably exceeds the 0.5975
from clinical data. This observation accentuates the

more comprehensive insights provided by radiomics.

Combining both clinical and radiomics features escalates

the C-index to 0.7488, distinctly outpacing individual

modalities. This aligns with current literature emphasiz-

ing the superior efficacy of multimodal approaches over

their unimodal counterparts.

2) In our image data fusion experiments, relying exclu-

sively on CT+PET results in a C-index of 0.5432. Yet,

integrating the proposed AMBF fusion strategy propels

TABLE II
PERFORMANCES OF THE MODELS ON THE

NSCLC RADIOGENOMICS DATASET

Method MAE↓ C-index↑
Clinical 0.2534 0.5975

Radiomics 0.2372 0.6497

Clinical+Radiomics 0.1728 0.7488

CT+PET 0.2773 0.5432

CT+PET+AMBF 0.2017 0.6768

AMBF-SA (Ours) 0.1341 0.8325

this value to 0.6768. This significant increment not only

corroborates the robustness of our fusion strategy but

also underlines its adeptness at mining more profound

insights from image datasets.

3) A cornerstone of our contribution is the novel AMBF-

SA algorithm. Seamlessly integrating data from Clinical

+ Radiomics and CT+PET+AMBF, it registers excep-

tional performance metrics. With an enviable MAE of

0.1341 and a stellar C-index of 0.8325, the AMBF-

SA methodology eclipses the other techniques assessed.

Such results underline the paramount efficacy of our

proposed technique, hinting at its prospective utility in

the broader research landscape.

V. CONCLUSION AND FUTURE WORK

In this paper, we design a novel SA framework, named

AMBF-SA, to address the three unique challenges identified

in current SA research. We investigate the prognostic value of

various data modalities, including clinical, radiomic, and fused

image data, in predicting survival outcomes for patients within

the NSCLC Radiogenomics dataset. Experimental results un-

der the MAE and C-index metrics underscore the intrinsic

merits of incorporating both clinical and radiomic features,

in which the combined features’ approach notably surpassed

the individual performances of either modality, attesting to

its efficacy. Furthermore, our proposed AMBF-SA method-

ology, which amalgamates the rest of the models, exhibited

unprecedented accuracy, as evidenced by its superior MAE

and C-index metrics, which not only solidifies the potential of

multimodal strategies over their unimodal counterparts but also

emphasizes the versatility and capability of our novel fusion

mechanism.

For future endeavors, we aim to expand our dataset to

enhance the generalizability of our model. Integrating more

diverse imaging modalities may also provide richer infor-

mation for predictions. We also foresee leveraging advanced

deep learning techniques to further refine our fusion strategies,

potentially driving even more robust and accurate prognostic

models for NSCLC patients.
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